

Western Cape Government

Agriculture

BETTER TOGETHER.

GENETIC TRENDS, PRINCIPAL COMPONENTS AND SIGNATURES OF SELECTION FOR A MERINO RESOURCE FLOCK DIVERGENTLY SELECTED FOR REPRODUCTION

Cornelius Nel

Prof S.W.P. Cloete Prof. K. Dzama

Introduction - Reproduction

Reproductive Performance

- Key facet of production
- Genetic improvement has proven challenging
- Quantification
- Distribution
- Heritability

Quantitative Selection for Reproduction

- Capable to deliver worthwhile gains
- Support emphasis of reproductive traits
- Long term responses in production and reproduction traits

Introduction – Modern Technologies

Population Genomics

- Characterization of genetic structures
- Define population groups with much greater definition

Current Focus

Elsenburg Merino resource flock

- Case-control group that shares an ancestral population
- Divergently selected for reproductive performance over an extended period
- Phenotypic and genotypic data
- Population structure and divergence in context of reproduction

- Evaluate the trends in breeding values of both product and reproductive traits over a 30 year period
 - Elaborate on quantitative observations through genomic enquiries into population divergence

Materials and Methods

The Elsenburg Merino flock

- Divergent selection for reproduction
 - NLW per ewe joined
 - High Line vs Low Line
- Data recorded over a 30-year period from 1986 to 2016
- Progeny Records of 5092 individuals

Genetic Trends

- NLW, YW, FD, TFS
 - Individual Breeding Values
 - ASREML
 - GLMM
 - Uni-Trait Analysis
 - Trends over time
 - BVs used to predict mean values for each group within years
 - Separate trends for progeny from outside sires
 - Linear regressions

Materials and Methods

Genomic Data Generation

- 390 influential animals genotyped between 2012 and 2018
- Illumina OvineSNP50
- Quality Control
 - 47725 SNPs left for analysis

Genomic Analysis

- "R"
- Open Source Statistical Software
- PCA
- Signatures of selection
- ggplot2, irlba, lokern

Genetic Trends For Fibre Diameter

1986 to 2016

Results and Discussion - Regression Lines

Trait	Coefficients	Risk Statistic	R2	% of mean
NLW/EJ				
H-Line	0.0093 ± 0.0002	p < 0.01	0.98	1.02%
L-Line	-0.006 ± 0.004	p < 0.01	0.82	-0.70%
YW				
H-Line	0.066 ± 0.005	p < 0.01	0.84	0.17%
L-Line	-0.116 ± 0.01	P < 0.01	0.83	-0.44%
FD				
H-Line	-0.003 ± 0.002	p < 0.19	0.056	-0.02%
L-Line	0.035 ± 0.004	p < 0.01	0.754	0.18%
TFS				
H-Line	-0.042 ± 0.004	p < 0.01	0.774	-0.54%
L-Line	0.078 ± 0.004	p < 0.01	0.69	0.99%

Results and Discussion - PCA

Principal Components for High and Low Lines

Results and Discussion - Fst Values

Conclusions and Recommendations

- Results of the current study contributes to our understanding of the effects of selection for reproductive performance
 - Relatively few detrimental effects
 - Promotes the inclusion of reproduction in selection indices
- Observations from a genomic perspective support quantitative observations of divergence
- Recommend continued data generation on a genomic basis
 - GWAS
 - GEBV

Acknowledgements

UNIVERSITEIT iYUNIVESITH1 **STELLENBOSCH** UNIVERSITY

cular Breeding & Biodiversity

an initiative of the dti

Western Cape AGRICULTURAL RESEARCH TRUST

Wes - Kaap

Thank you